Potential for climate-induced
disruption of plant-fungal symbioses
in the Rocky Mountains

Melanie Kazenel

7 April 2016




How will climate change alter plant-symbiont interactions?



Plants and Fungal Symbionts

-J‘--v—a‘"_:"
[— _Q,::g:—f..-{:"' - i 89,3
o e y ST RASERE S
Systemic ‘ \ .
endophytes [ 2 ‘ Localized foliar
(Epichloé sp.) endophytes (LFE)
Arbuscular
mycorrhizal
fungi (AMF) Dark septate

endophytes (DSE)



Symbionts can mediate plant responses to climate change
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Climate change may disrupt symbioses as organisms
experience range shifts
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Mechanisms for disruption of plant-symbiont interactions

Plants and symbionts may have different:

» Physiological tolerances
» Dispersal rates
» Phenological responses




Study System

Mountains

- ~25% of land area on Earth
- 50% of the human water supply
- 1/3 of terrestrial plant diversity

Grasses

- Cover 1/3 of land area (>10,000
species)

- Provide the majority of food for
humans and domesticated animals
- All have mycorrhizal fungi in roots
and fungi in leaves




Altitudinal Gradients and Experimental Warming
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Warming Experiment
Rocky Mountain Biological Laboratory

Established in 1991

Warms top 15 cm of soil by ~2°C

Dries soil by 10-20%

Extends growing season by ~12 days on each end
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Study Species

Achnatherum Festuca Poa

lettermanii thurberi pratensis
(ACLE) (FETH) (POPR)




Experimental warming reduced grasses (1991 — 2011)
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Experimental warming increased mycorrhizal colonization
of roots
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Field collection methods

> 3 focal grass species:
> Achnatherum lettermanii
» Festuca thuerberi
» Poa pratensis
» 6 individual plants collected per species per plot
» Roots and leaves (2014)
» Phenology: June and September
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Laboratory methods

» Staining and microscopy — colonization
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lllumina Sequencing

Paired-end sequencing of fungal nuclear ribosomal DNA using

primers targeting:

» ITS2 region (for VTE, LFE, and DSE)
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lllumina Sequencing

Paired-end sequencing of fungal nuclear ribosomal DNA using
primers targeting:

» ITS2 region (for VTE, LFE, and DSE)

» ~300bp in the 28S region (for AMF) (FLR3-FLR4 primers)

Nuclear Small 5.85 Nuclear Large
Subunit 188 TSt Ll Subunit 288
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Quality filtering in QIIME

Sumaclust to place similar sequences into operational
taxonomic units (OTUs) at ~97% identity

NCBI BLAST to assign taxonomy

Discarded all OTUs with <97% identity to entry in database
Normalized data using DESeq?2

Discarded singletons

Conducted analyses on 802 OTUs
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Analyses

» NMDS: to visualize OTU composition
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perMANOVA: to test how variables of interest affect OTU
composition

Fixed effects: warming treatment, host species, sampling date
Random effect: block (pair of plots)

PERMDISP: to test for dispersion within groups

Indicator species analysis (SIMPER): to identify OTUs that
contributed strongly to differences among groups
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Results: All Species

» OTU composition did not differ between warming treatments
(df =1, pseudo-F = 1.361, P = 0.1391)
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Results: All Species

» OTU composition did not differ between warming treatments
(df =1, pseudo-F = 1.361, P = 0.1391)

» High stress value

» Spatial heterogeneity (significant effect of block)

3D Stress: 0.14 Warming
A control
w warmed




» OTU composition differed between sampling dates (df = 1,
pseudo-F = 2.9483, P = 0.0009) and among host species (df
= 2, pseudo-F = 5.4469, P = 0.0001)
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» OTU composition differed between sampling dates (df = 1,
pseudo-F = 2.9483, P = 0.0009) and among host species (df
= 2, pseudo-F = 5.4469, P = 0.0001)

» FT differed from AL and PP

» Communities of AL and PP were significantly more dispersed
relative to communities of FT (PERMDISP)

[Resemblance: 517 Bray Curtis similarity
3D stress: 0.14 | HostSpeciesDate
A ALSeptember
® FTSeptember
W PPSeptember




Changes in AMF colonization between June and
September for all three grasses
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Results: A. lettermanii
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» Sampling date affected OTU composition (df = 1, psuedo-F =
3.1274, P = 0.0024
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» Sampling date affected OTU composition (df = 1, psuedo-F =
3.1274, P = 0.0024

> No difference in dispersion between two dates

» Grouping by plot

[Resemblance: S17 Bray Curtis similarity |
3D Stress: 0.1 Date

A September
¥ June




Results: F. thurberi
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Results: P. pratensis

» No effect of warming
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Results: P. pratensis

> No effect of warming
» Effect of sampling date (df = 1, pseudo-F = 2.6595, P =
0.0065
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Indicator Species Analysis (SIMPER)

Control vs. warmed plots

Control Warmed
Avg. Avg. Avg.
OTU Abundance Abundance Dissimilarity Contribution %
OTUS 7.19 6.72 0.47 0.96
oTuU4 7.52 7.14 0.42 0.86
OTU6 35 1.94 0.42 0.86
OTU15 3.99 4.02 0.42 0.85

oTuU12 4.05 4.59 0.42 0.84




F. thurberi vs. P. pratensis

[RESEmbiance” S17 Bray Curts Siiar,

30 swess 014 (HostSpeciesDate

FETH POPR o Froepiomer
Avg. Avg. Avg. Contribution m PPSeptember
oty bund bund Dissimilarity % befeoiris
0TU15 717 2.36 0.53 1.02 0O PPJune
0TU16 5.39 2.01 0.5 0.96
0oTU11 4.39 8.72 0.49 0.95
0TU24 5.04 0.78 0.48 0.93
0TU12 5.96 2.72 0.47 0.91
FETH ACLE
Avg. Avg. Avg. Contribution
oTu Abund bund: Dissimilarity %
0TU15 7.17 241 0.54 1.07
oTUS 4.81 8.68 0.53 1.05
oTu24 5.04 0.3 0.5 0.98
0oTU16 5.39 1.46 0.47 0.92
OoTU11 4.39 7.53 0.43 0.85

F. thurberi vs. A. lettermanii



Taxonomy

Top BLAST Hit Details

oTu Top BLAST Hit Study Location Study System Citation
0TU16 Uncultured California, USA Giant sequoia (Sequoiadendron Fahey et al. 2012,
Glomeromycota giganteum) Mycologia
0TU15 Uncultured Glomus  Michigan, USA Northern hardwood forest van Diepen et al. 2013,
dominated by sugar maple (Acer Applied Soil Ecology
saccharum)
0oTu24 Uncultured Qinghai-Tibetan Alpine meadow Yang et al. 2013, PLOS ONE
Glomeromycota Plateau, China
oTu11 Uncultured Hungary Agricultural system (corn, wheat, Magurno et al. 2014, Open
Glomeromycota alfalfa, barley, peas) Journal of Ecology
OTUS Uncultured Montana, USA Native grassland vs. system Mummey and Rillig 2006,
Glomeromycota dominated by Centaurea maculosa  Plant and Soil
(spotted knapweed)
0TU12 Uncultured Czech Republic Knautia arvensis (Caprifoliaceae) Doubkova et al. 2013,
Glomeraceae Mycorrhiza
oTuU4 Uncultured Tibetan Plateau, China  Herbaceous plants Li et al., Unpublished
Glomeromycota
oTU6 Uncultured Canada Crested wheatgrass (Agropyron Perez et al. 2008,
Glomeromycota cristatum) Agriculture and Agrifood
Canada
0TU10 Uncultured Canada Switchgrass (Panicum virgatum) Perez et al. 2008,

Glomeromycota

Agriculture and Agrifood
Canada




Questions or comments?




