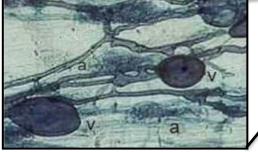
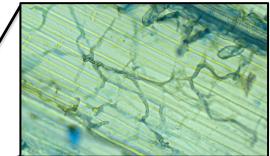

Potential for climate-induced disruption of plant-fungal symbioses in the Rocky Mountains

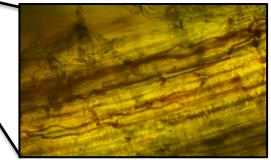
Melanie Kazenel 7 April 2016

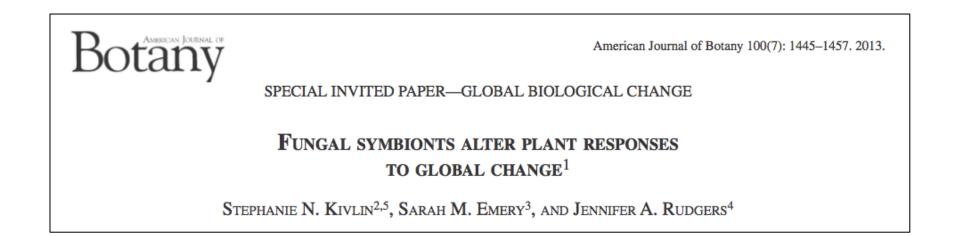


How will climate change alter plant-symbiont interactions?


Systemic endophytes (Epichloë sp.)

Arbuscular mycorrhizal fungi (AMF)


Plants and Fungal Symbionts



Localized foliar endophytes (LFE)

Dark septate endophytes (DSE)

Symbionts can mediate plant responses to climate change

Symbionts altered plant responses to drought, N deposition, and warming

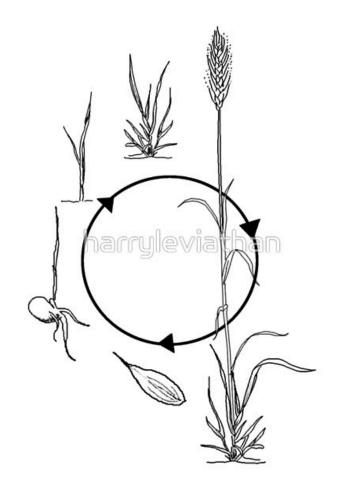
Climate change may disrupt symbioses as organisms experience range shifts

SCIENCE VOL 336 20 APRIL 2012

Recent Plant Diversity Changes on Europe's Mountain Summits

Harald Pauli, ¹* Michael Gottfried, ²† Stefan Dullinger, ^{2,3}* Otari Abdaladze, ⁴ Maia Akhalkatsi, ⁴ José Luis Benito Alonso, ⁵ Gheorghe Coldea, ⁶ Jan Dick, ⁷ Brigitta Erschbamer, ⁸ Rosa Fernández Calzado, ⁹ Dany Ghosn, ¹⁰ Jarle I. Holten, ¹¹ Robert Kanka, ¹² George Kazakis, ¹⁰ Jozef Kollár, ¹² Per Larsson, ¹³ Pavel Moiseev, ¹⁴ Dmitry Moiseev, ¹⁴ Ulf Molau, ¹³ Joaquín Molero Mesa, ⁹ Laszlo Nagy, ^{15,16} Giovanni Pelino, ¹⁷ Mihai Puşcaş, ¹⁸ Graziano Rossi, ¹⁹ Angela Stanisci, ¹⁷ Anne O. Syverhuset, ¹¹ Jean-Paul Theurillat, ^{20,21} Marcello Tomaselli, ²² Peter Unterluggauer, ⁸ Luis Villar, ⁵ Pascal Vittoz, ²³ Georg Grabherr¹

> nature climate change


PUBLISHED ONLINE: 10 JANUARY 2012 | DOI:10.1038/NCLIMATE132

Continent-wide response of mountain vegetation to climate change

Michael Gottfried¹, Harald Pauli²*, Andreas Futschik³, Maia Akhalkatsi⁴, Peter Barančok⁵, José Luis Benito Alonso⁶, Gheorghe Coldea⁷, Jan Dick⁸, Brigitta Erschbamer⁹, María Rosa Fernández Calzado¹⁰, George Kazakis¹¹, Ján Krajči⁵, Per Larsson¹², Martin Mallaun¹³, Ottar Michelsen¹⁴, Dmitry Moiseev¹⁵, Pavel Moiseev¹⁵, Ulf Molau¹⁶, Abderrahmane Merzouki¹⁰, Laszlo Nagy^{17,18}, George Nakhutsrishvili¹⁹, Bård Pedersen²⁰, Giovanni Pelino²¹, Mihai Puscas²², Graziano Rossi²³, Angela Stanisci²¹, Jean-Paul Theurillat^{24,25}, Marcello Tomaselli²⁶, Luis Villar⁶, Pascal Vittoz²⁷, Ioannis Vogiatzakis²⁸ and Georg Grabherr² Mechanisms for disruption of plantsymbiont interactions

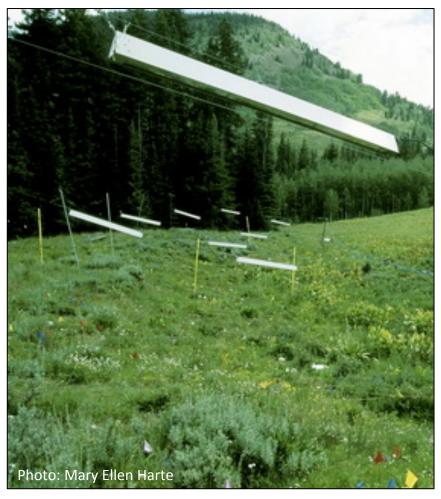
Plants and symbionts may have different:

- Physiological tolerances
- Dispersal rates
- Phenological responses

Study System

Mountains

- ~25% of land area on Earth
- 50% of the human water supply
- 1/3 of terrestrial plant diversity

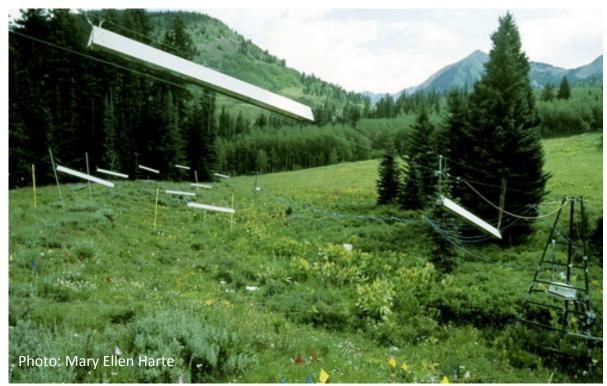

Grasses

- Cover 1/3 of land area (>10,000 species)
- Provide the majority of food for humans and domesticated animals
- All have mycorrhizal fungi in roots and fungi in leaves

Altitudinal Gradients

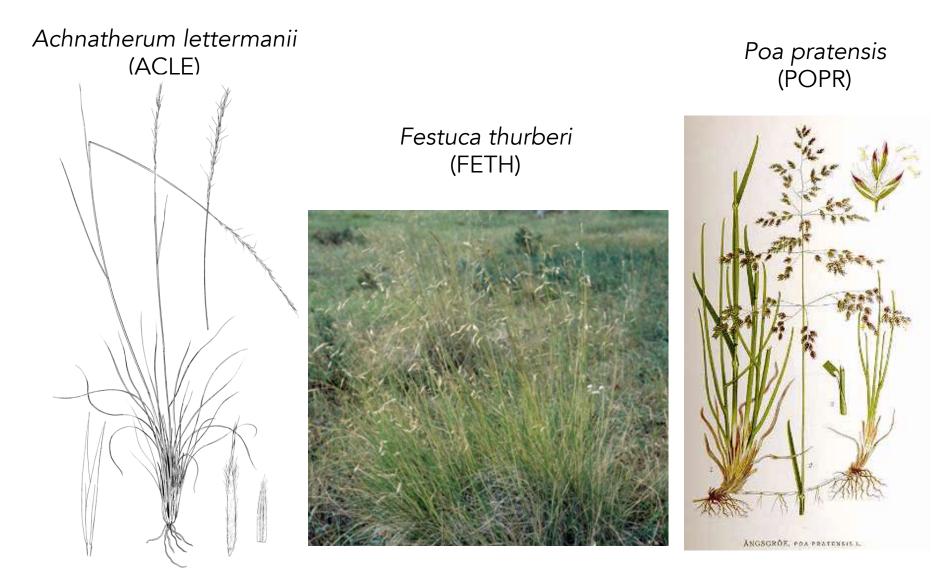
Experimental Warming

Focal questions

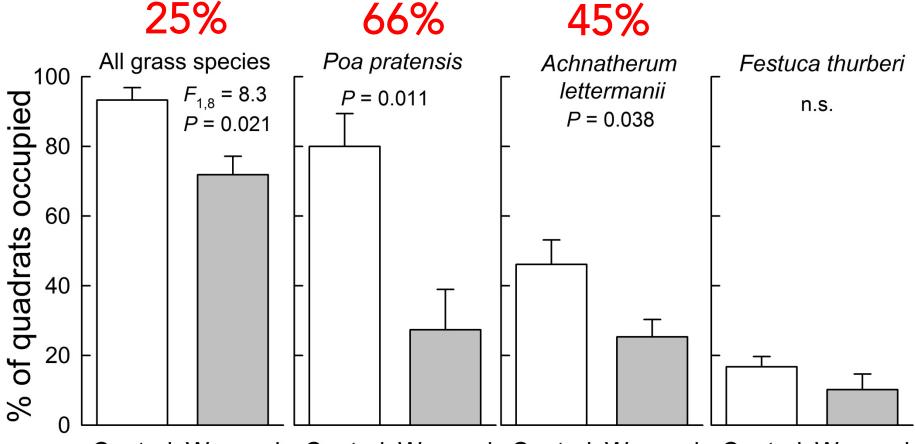

How do symbionts change with altitude and warming?

a) Altitude response?

b) Warming response?


c) Are they the same?

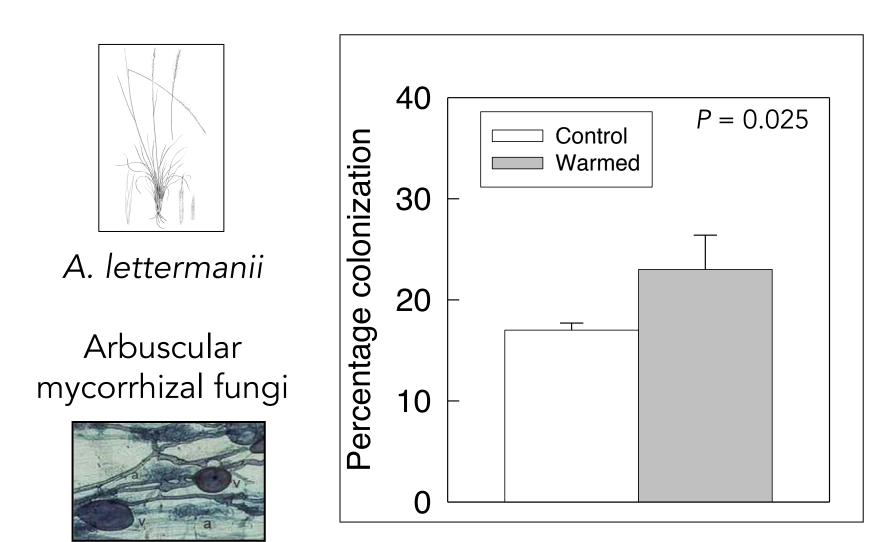
Warming Experiment Rocky Mountain Biological Laboratory



Established in 1991 Warms top 15 cm of soil by ~2°C Dries soil by 10-20% Extends growing season by ~12 days on each end

Study Species

Experimental warming reduced grasses (1991 – 2011)



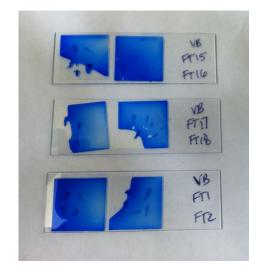
Control Warmed Control Warmed Control Warmed Control Warmed

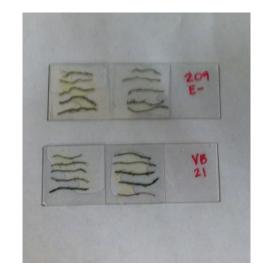
Mean % ± s.e. of 49 (0.2m×0.2m) quadrats surveyed per plot n = 5 plots per warming treatment

Rudgers et al. Ecology (2014)

Experimental warming increased mycorrhizal colonization of roots

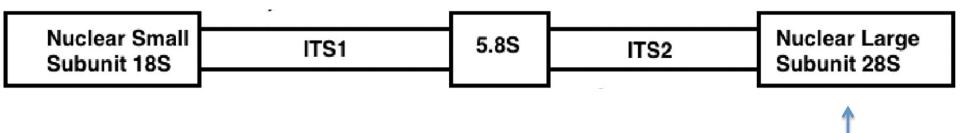
Rudgers et al. Ecology (2014)


Field collection methods


- 3 focal grass species:
 - Achnatherum lettermanii
 - Poa pratensis
 - Festuca thurberi
- 6 individual plants collected per species per plot
- Roots and leaves (2014)
- Phenology: June and September

Laboratory methods

 Staining and microscopy → colonization

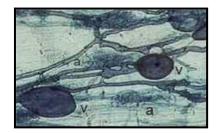

Illumina MiSeq
DNA sequencing
→ composition

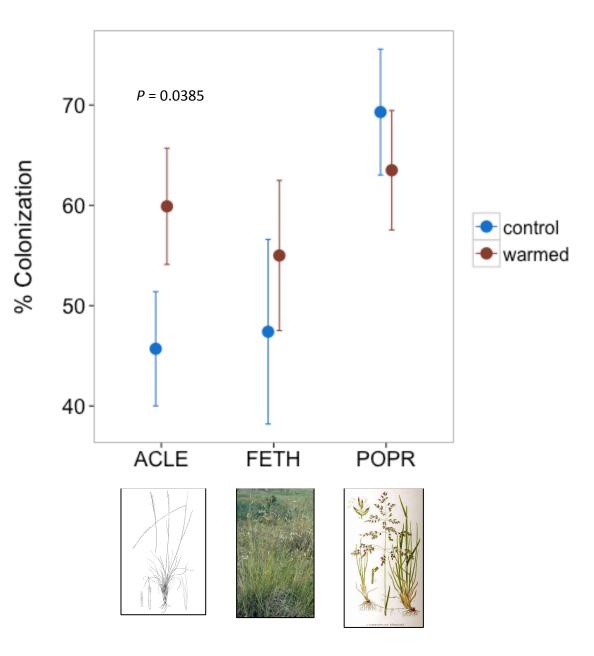
Illumina Sequencing

Paired-end sequencing of fungal nuclear ribosomal DNA using primers targeting: – ITS2 region (for VTE, LFE, and DSE)

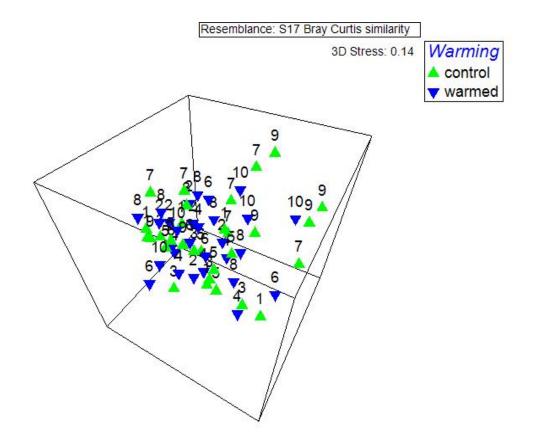
 ~300bp in the 28S region (for AMF) (FLR3-FLR4 primers)

Bioinformatics

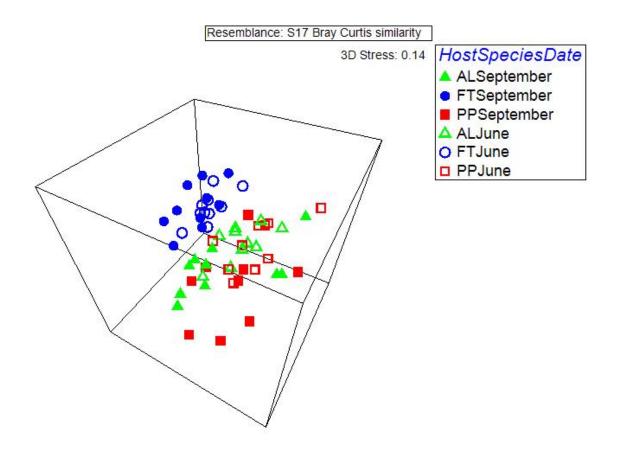

- Quality filtering in QIIME
- Sumaclust to place similar sequences into operational taxonomic units (OTUs) at ~97% identity
- NCBI BLAST to assign taxonomy
 - Discarded all OTUs with <97% identity to entry in database
- Normalized data using DESeq2
- Discarded singletons


\rightarrow Conducted analyses on 802 OTUs

Analyses

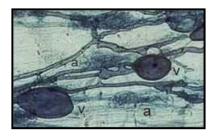

- NMDS: to visualize OTU composition
- perMANOVA: to test how variables of interest affect OTU composition
 - Fixed effects: warming treatment, host species, sampling date
 - Random effect: block (pair of plots)
- PERMDISP: to test for dispersion within groups
- Indicator species analysis (SIMPER): to identify OTUs that contributed strongly to differences among groups

Arbuscular mycorrhizal fungi



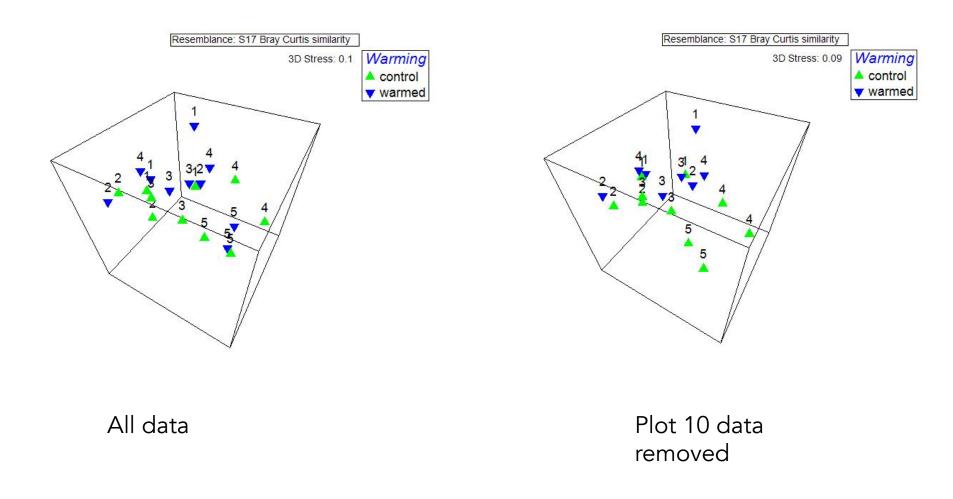
Results: All Species

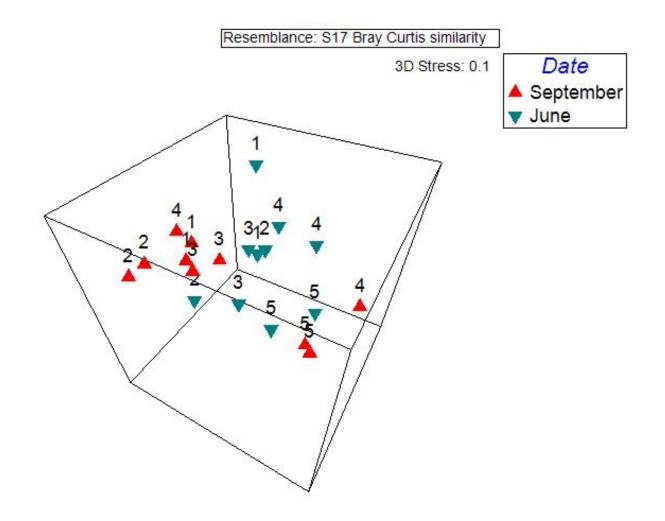
- OTU composition did not differ between warming treatments (df = 1, pseudo-F = 1.361, P = 0.1391)
- High stress value
- Spatial heterogeneity (significant effect of block)

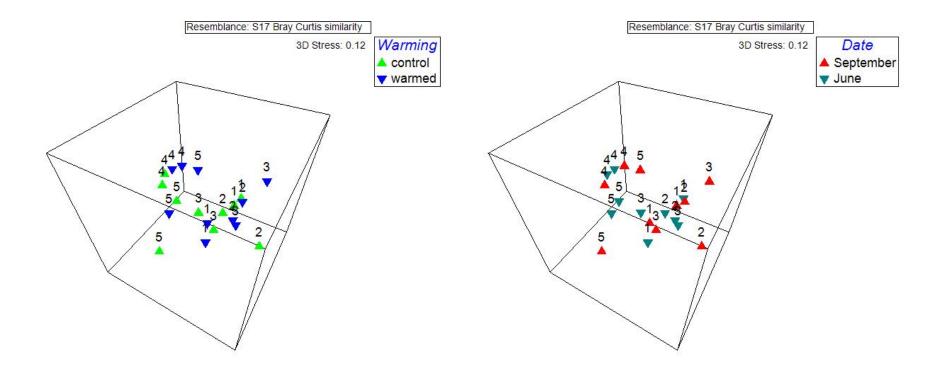


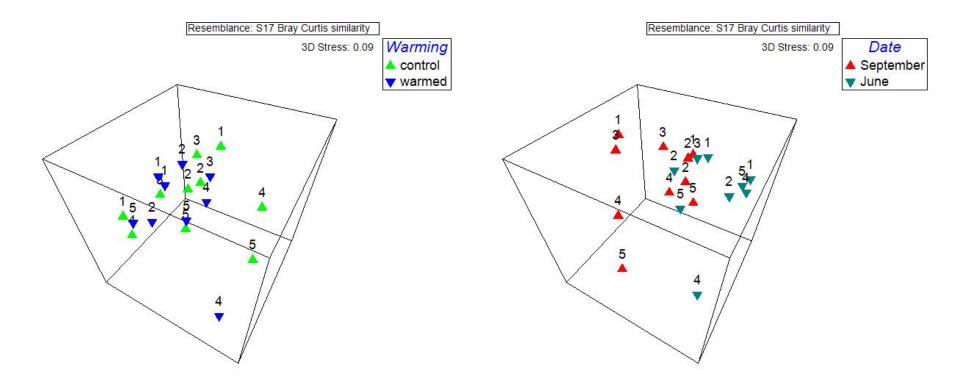

OTU composition differed between sampling dates (df = 1, pseudo-F = 2.9483, P = 0.0009) and among host species (df = 2, pseudo-F = 5.4469, P = 0.0001)

- FT differed from AL and PP
- Communities of AL and PP were significantly more dispersed relative to communities of FT (PERMDISP)


Changes in AMF colonization between June and September for all three grasses


Arbuscular mycorrhizal fungi


Results: A. lettermanii

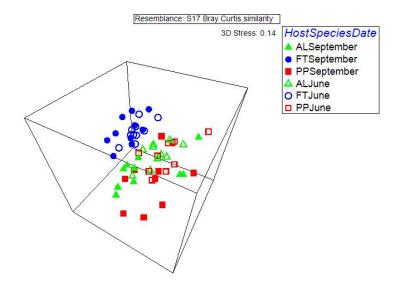

- Sampling date affected OTU composition (df = 1, psuedo-F = 3.1274, P = 0.0024
- No difference in dispersion between two dates
- Grouping by plot

Results: F. thurberi

No effect of warming or sampling date

Results: P. pratensis

- No effect of warming
- Effect of sampling date (df = 1, pseudo-F = 2.6595, P = 0.0065

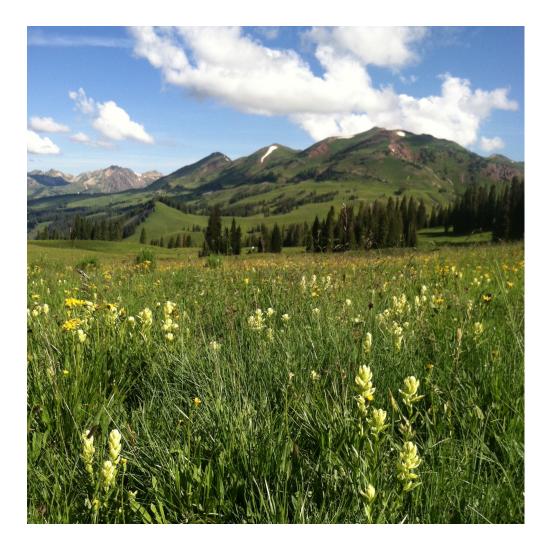

Indicator Species Analysis (SIMPER)

Control vs. warmed plots

	Control	Warmed		
	Avg.	Avg.	Avg.	
OTU	Abundance	Abundance	Dissimilarity	Contribution %
OTU5	7.19	6.72	0.47	0.96
OTU4	7.52	7.14	0.42	0.86
OTU6	3.5	1.94	0.42	0.86
OTU15	3.99	4.02	0.42	0.85
OTU12	4.05	4.59	0.42	0.84

	FETH	POPR		
	Avg.	Avg.	Avg.	Contribution
ΟΤυ	Abundance	Abundance	Dissimilarity	%
OTU15	7.17	2.36	0.53	1.02
OTU16	5.39	2.01	0.5	0.96
OTU11	4.39	8.72	0.49	0.95
OTU24	5.04	0.78	0.48	0.93
OTU12	5.96	2.72	0.47	0.91

F. thurberi vs. P. pratensis


F. thurberi vs. A. lettermanii

ΟΤυ	FETH Avg. Abundance	ACLE Avg. Abundance	Avg. Dissimilarity	Contribution %
OTU15	7.17	2.41	0.54	1.07
OTU5	4.81	8.68	0.53	1.05
OTU24	5.04	0.3	0.5	0.98
OTU16	5.39	1.46	0.47	0.92
OTU11	4.39	7.53	0.43	0.85

Taxonomy

		Top BLAST Hit Details		
ΟΤυ	Top BLAST Hit	Study Location	Study System	Citation
OTU16	Uncultured Glomeromycota	California, USA	Giant sequoia (Sequoiadendron giganteum)	Fahey et al. 2012, Mycologia
OTU15	Uncultured Glomus	Michigan, USA	Northern hardwood forest dominated by sugar maple (<i>Acer</i> <i>saccharum</i>)	van Diepen et al. 2013, Applied Soil Ecology
OTU24	Uncultured Glomeromycota	Qinghai-Tibetan Plateau, China	Alpine meadow	Yang et al. 2013, PLOS ONE
OTU11	Uncultured Glomeromycota	Hungary	Agricultural system (corn, wheat, alfalfa, barley, peas)	Magurno et al. 2014, Open Journal of Ecology
OTU5	Uncultured Glomeromycota	Montana, USA	Native grassland vs. system dominated by <i>Centaurea maculosa</i> (spotted knapweed)	Mummey and Rillig 2006, Plant and Soil
OTU12	Uncultured Glomeraceae	Czech Republic	Knautia arvensis (Caprifoliaceae)	Doubková et al. 2013, <i>Mycorrhiza</i>
OTU4	Uncultured Glomeromycota	Tibetan Plateau, China	Herbaceous plants	Li et al., Unpublished
OTU6	Uncultured Glomeromycota	Canada	Crested wheatgrass (Agropyron cristatum)	Perez et al. 2008, Agriculture and Agrifood Canada
OTU10	Uncultured Glomeromycota	Canada	Switchgrass (Panicum virgatum)	Perez et al. 2008, Agriculture and Agrifood Canada

Questions or comments?

